

Construction Process Modelling

Elisa Marengo (marengo@inf.unibz.it)
Faculty of Computer Science, Free University of Bolzano

Joint work with Werner Nutt and Matthias Perktold

Construction Projects are "Rarely" On-Time/On-Budget

- Wembley National Stadium
 - Commenced: 2002
 - Planned Completion:
 Early 2006
 - Open: March 2007
 - Delay: 1 year
 - Planned Cost: £757m
 - Final Cost (approx.): £1bn
 - Increased cost: 32%

http://www.globalconstructionreview.com/

Construction Projects are "Rarely" On-Time/On-Budget

- Berlin Airport
 - Commenced: 2006
 - Planned Completion: 2011 2012 2013
 - Open: Oct 2020 ???
 - Delay: 9 Years
 - Planned cost: €2bn
 - Current Cost: €7bn
 - Increased cost: 200%

https://www.economist.com/the-economist-explains/

...and Many More

What are the challenges

What are the challenges

- Coordination
 - Between SMEs
 - With the Supply Chain
- Low Standardisation
 - Each project is one of a kind

Technically

≠ Manufacturing

What are the challenges

- Coordination
 - Between SMEs
 - With the Supply Chain
- Low Standardisation
 - Each project is one of a kind
- Imponderabilities
 - E.g., weather conditions, changing requirements
 - Unavoidable

Current Approach

- Execution Process Management: Gantt Charts
- Defined by the Project Manager
- Tools: MS Project / MS Excel

DI BOLZANO

Gantt Charts: Pros

- For the entire duration of the project
- Show alternation of companies on-site
- Show milestones
- Support communication with the customer

DI BOLZANO

Gantt Charts: Cons

- General purpose: no proper abstractions (e.g., Locations, Precedences)
- Difficult to update
- Not detailed for a daily / weekly schedule
- They already represent a (long-term) commitment

DI BOLZANO

Management with Gantt Charts (1)

- There is no clear definition of the process requirements:
 - Single point of failure: PM / Foreman
 - Alternative plans? Optimisation? Automation?

Management with Gantt Charts (2)

- Daily / Weekly schedule defined "on the fly"
 - No short- and medium-term planning
 - Synch with supply chain and between companies

Management with Gantt Charts (3)

- Do not support report on the actual progress
 - Progress estimated based on indirect measures
 - Are used for tendering purposes only (no updates)

COCkPiT

- COCkPiT
 Collaborative Construction Process Management
- Applied research project
- European Regional Development Fund (ERDF -EFRE - FESR1008) of the Autonomous Province of Bolzano-South Tyrol

Scientific Team

Fakultät für Informatik
Facoltà di Scienze e Tecnologie informatiche
Faculty of Computer Science

Fakultät für Naturwissenschaften und Technik Facoltà di Scienze e Tecnologie Faculty of Science and Technology

Elisa Marengo

Patrick Dallasega

Carmen Marcher

Mehtab Alam

Peng Cheng

Hebatallah Mohamed

Dominik Matt

Andrea Revolti

Christoph Schimanski

Camilla Follini

Companies

ATZWANGER

Interior

- Environmental engineering
- Water technology
- Energy engineering
- Building services

Envelope

- Engineering
- Production
- Installation of facades

Skeleton

- Competences as bricklayers, carpenters and metalworkers
- Acting also as General Contractors

COCkPiT: What is it?

- Objective:
 Improve Execution Process Management in Construction by
 - Developing Methodologies
 - Increasing Digitalisation

COCkPiT: What is it?

- Objective:
 Improve Execution Process Management in Construction by
 - Developing Methodologies
 - Increasing Digitalisation
- This would allow:
 - reduce delays
 - reduce cost overruns
 - better synchronisation with the supply chain
 - better usage of the resources
 - ...

How To Do That

AUTONOMA DI BOLZANO

Topic of Today: Modelling

- Objective: Explicit representation of the process requirements
 - No more single point of failure
 - Identification of alternative plans
 - > Automation / Optimisation
 - > Flexibility in handling imponderabilities

Topic of Today: Modelling

- Objective: Explicit representation of the process requirements
 - No more single point of failure
 - Identification of alternative plans
 - > Automation / Optimisation
 - > Flexibility in handling imponderabilities
- Requirements:
 - Proper abstractions
 - Formal approach

First Approach

- Expansion of the Bolzano Hospital
- Modeling
 - Decoupled from scheduling
 - Define What and Where (not yet when)
 - Collaborative modelling

First Approach

- Expansion of the Bolzano Hospital
- Modeling
 - Decoupled from scheduling
 - Define What and Where (not yet when)
 - Collaborative modelling
- Scheduling
 - Define How and When

Bolzano Hospital

AUTONOMA

ALTO ADIGE

Elements in the model

- Tasks
 - What: Activity
 - Who: Craft
 - Where: Locations
 - How long: Productivity
 - Notes

Productivity

Elements in the model

- Tasks
 - What: Activity
 - Who: Craft
 - Where: Locations
 - How long: Productivity
 - Notes
- Synchronisation
 - Declarative precedences

Hidden Knowledge and Ambiguities

Orderings

among the locations (bottom to top, top to bottom)

Hidden Knowledge and Ambiguities

Hidden Knowledge and Ambiguities

Orderings

among the locations (bottom to top, top to bottom)

 Precedence Scope (floor, activity, building)

How to perform Loops

Topic of Today: Modelling

Customisable Building Representation

Customisable Building Representation

Customisable Building Representation

Representation of Locations

- A building is abstractly represented as a tree
- Locations in the tasks are subtrees

Ordering Constraints

- Attribute domain values can be ordered
- Ascending and descending ordering constraints

Exclusivity Constraints

- Once the task is started, no other task can be performed there
- By default: exclusivity at the unit level

Precedences

Precedences between activities

Precedences: Scope

- The Scope specialises the precedence (e.g., precedence by <sector, level>)
- By default: Activity level

Precedences: Alternate Precedence

- Alternation between antecedent and consequent:
 - antecedent before consequent
 - and the antecedent has to wait for the consequent

Precedences: Chain Precedence

- Chain between two activities:
 - no other activities can be performed in-between

Does my model make sense?

PROVINZ BOZEN

Does my model make sense?

Is there an execution satisfying all the constraints?
 Satisfiability Check

Is checking for loops enough to determine Satisfiability?

- Is checking for loops enough to determine Satisfiability?
 - No,
 - Consider also the dependencies, scopes and locations

How to Check Satisfiability?

- Our model has a logic based semantics (LTLf)
- We can apply model checking techniques

How to Check Satisfiability?

Other Way to Check Satisfiability?

Translate a Diagram into a Task-Unit (TU) Graph

Other Way to Check Satisfiability?

- Translate a Diagram into a Task-Unit (TU) Graph
- Translate the precedences into arrows between TU nodes

Other Way to Check Satisfiability?

- Translate a Diagram into a Task-Unit (TU) Graph
- Translate the precedences into arrows between TU nodes

Disjunction in the TU Graph

- Some constraints introduce disjunction
- One has to check possible orientations

Algorithm at a Glance

- Check for Cycles
 - Cycles: If the graph contains a cycle then is not orientable

Algorithm at a Glance

Check for Cycles

Cycles: If the graph contains a cycle then is not orientable

Deterministic Orientation

 Direct the undirected edges for which only one orientation is possible

Algorithm at a Glance

Check for Cycles

Cycles: If the graph contains a cycle then is not orientable

Deterministic Orientation

 Direct the undirected edges for which only one orientation is possible

Divide&Conquer

- Partition the graph so that:
 - orientability can be checked for each subgraph
 - by trying all orientations

Model	Tasks	Dep.	Loc.	Nodes	Arcs	Edges	NuSMV	US
Sat.	8	9	312	236	9415	524	2min 35s	27 ms
Non-sat.	8	9	312	236	10003	521	>1h	5 ms

Model	Tasks	Dep.	Loc.	Nodes	Arcs	Edges	NuSMV	US
Sat.	8	9	312	236	9415	524	2min 35s	27 ms
Non-sat.	8	9	312	236	10003	521	>1h	5 ms
Bigger	12	14	312 (2)	244	9435	574	>1h	10 ms
More Edges	12	14	312 (47)	424	15131	1740	>1h	23 ms

Model	Tasks	Dep.	Nodes	Arcs	Edges	US
Sat.	8	9	236	9415	524	27 ms
Non-sat.	8	9	236	10003	521	5 ms
Bigger	12	14	244	9435	574	10 ms
More Edges	12	14	424	15131	1740	23 ms
Bigger	480	1291	16,960	1,436,759	678,680	55,866 ms (~1 min)
Bigger	720	2,526	25,440	3,082,925	1,526,820	379,409 ms (~6.32 min)
Bigger	960	4,187	33,920	5,217,426	2,714,160	ООМ

Summary

- CoPMod: Constuction Process Modelling Language
 - Graphical
 - Declarative: captures process requirements (what and not how)
 - Formal
- Effective algorithm to check satisfiability
- proof-of-concept tool @copmod.inf.unibz.it

Future Work

- Europäischer Fonds für regionale Entwicklung Fondo europeo di sviluppo regionale

 AUTONOME PROVINZ BOZEN SÜDTIROL

 PROVINZ BOZEN SÜDTIROL
- COCkPiT:
 Collaborative Construction Project managemenT
- Integrate Automatic Schedule:
 - Modeling
 - Automated Scheduling
 - Monitoring/Analysis

KRDB — Summer Online Seminars

Thank you

Elisa Marengo
Werner Nutt
Matthias Perktold

Free University of Bolzano